Partitions on the real line

Robert Rałowski and Szymon Żeberski

Winter School in Abstract Analysis
section Set Theory
Hejnice 2011

Definition (Cardinal coefficients)
For any $I \subset \mathscr{P}(X)$ let

$$
\begin{gathered}
\operatorname{non}(I)=\min \{|A|: A \subset X \wedge A \notin I\} \\
\operatorname{add}(I)=\min \{|\mathscr{A}|: \mathscr{A} \subset I \wedge \bigcup \mathscr{A} \notin I\} \\
\operatorname{cov}(I)=\min \{|\mathscr{A}|: \mathscr{A} \subset I \wedge \bigcup \mathscr{A}=X\}
\end{gathered}
$$

$\mathbb{L}-\sigma$ ideal of null sets

Definition

We say that C is completely \mathbb{I}-nonmeasurable in D iff for any \mathbb{I}-positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \backslash C$ are \mathbb{I}-positive.

Definition (outer, inner envelope)
Let $\mathbb{I} \sigma$-ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_{\mathbb{I}}=B$ is outer envelope of D iff

```
    1. }D\subseteqB\mathrm{ and B is a Borel set with }B\backslashD\in\mathbb{I}\mathrm{ and
    2. if D\subseteqC and C is Borel then B\C\in\mathbb{I}
Define lD[\mathbb{T}}\mathrm{ as an inner envelone od D iff 1D[#}=([\mp@subsup{D}{}{c}\mp@subsup{]}{\mathbb{I}}{}\mp@subsup{)}{}{c
Fact
If II is c.c.c.\sigma-ideal then the outer and inner envelopes exist for
any subset of the real line.
```


Definition

We say that C is completely \mathbb{I}-nonmeasurable in D iff for any \mathbb{I}-positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \backslash C$ are \mathbb{I}-positive.

Definition (outer, inner envelope)
Let $\mathbb{I} \sigma$-ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_{\mathbb{I}}=B$ is outer envelope of D iff

```
    1. }D\subseteqB\mathrm{ and B is a Borel set with }B\backslashD\in\mathbb{I}\mathrm{ and
    2. if D\subseteqC and }C\mathrm{ is Borel then }B\backslashC\in\mathbb{I}\mathrm{ .
Define lD[\mathbb{T}}\mathrm{ as an inner envelone od D iff 1D[#}=([\mp@subsup{D}{}{c}\mp@subsup{]}{\mathbb{I}}{}\mp@subsup{)}{}{c
Fact
If II is c.c.c.\sigma-ideal then the outer and inner envelopes exist for
any subset of the real line.
```


Definition

We say that C is completely \mathbb{I}-nonmeasurable in D iff for any \mathbb{I}-positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \backslash C$ are \mathbb{I}-positive.

Definition (outer, inner envelope)
Let $\mathbb{I} \sigma$-ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_{\mathbb{I}}=B$ is outer envelope of D iff

1. $D \subseteq B$ and B is a Borel set with $B \backslash D \in \mathbb{I}$ and
2. if $D \subseteq C$ and C is Borel then $B \backslash C \in \mathbb{I}$.

Define $] D[\mathbb{I}$ as an inner envelope od D iff $] D\left[\mathbb{I}=\left(\left[D^{c}\right]_{\mathbb{I}}\right)^{c}\right.$.
Fact
If I is c.c.c. σ-ideal then the outer and inner envelopes exist for
any subset of the real line.

Definition

We say that C is completely \mathbb{I}-nonmeasurable in D iff for any \mathbb{I}-positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \backslash C$ are \mathbb{I}-positive.

Definition (outer, inner envelope)
Let $\mathbb{I} \sigma$-ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_{\mathbb{I}}=B$ is outer envelope of D iff

1. $D \subseteq B$ and B is a Borel set with $B \backslash D \in \mathbb{I}$ and
2. if $D \subseteq C$ and C is Borel then $B \backslash C \in \mathbb{I}$.

Define $] D[\mathbb{I}$ as an inner envelope od D iff $] D\left[\mathbb{I}=\left(\left[D^{c}\right]_{\text {I }}\right)^{c}\right.$
Fact
If \mathbb{I} is c.c.c. σ-ideal then the outer and inner envelopes exist for
any subset of the real line.

Definition

We say that C is completely \mathbb{I}-nonmeasurable in D iff for any \mathbb{I}-positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \backslash C$ are \mathbb{I}-positive.

Definition (outer, inner envelope)
Let $\mathbb{I} \sigma$-ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_{\mathbb{I}}=B$ is outer envelope of D iff

1. $D \subseteq B$ and B is a Borel set with $B \backslash D \in \mathbb{I}$ and
2. if $D \subseteq C$ and C is Borel then $B \backslash C \in \mathbb{I}$.

Define $] D[\mathbb{I}$ as an inner envelope od D iff $] D\left[\mathbb{I}=\left(\left[D^{c}\right]_{\mathbb{I}}\right)^{c}\right.$.
Fact
If \mathbb{I} is c.c.c. σ-ideal then the outer and inner envelopes exist for
any subset of the real line.

Definition

We say that C is completely \mathbb{I}-nonmeasurable in D iff for any \mathbb{I}-positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \backslash C$ are \mathbb{I}-positive.

Definition (outer, inner envelope)
Let $\mathbb{I} \sigma$-ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_{\mathbb{I}}=B$ is outer envelope of D iff

1. $D \subseteq B$ and B is a Borel set with $B \backslash D \in \mathbb{I}$ and
2. if $D \subseteq C$ and C is Borel then $B \backslash C \in \mathbb{I}$.

Define $] D[\mathbb{I}$ as an inner envelope od D iff $] D\left[\mathbb{I}=\left(\left[D^{c}\right]_{\mathbb{I}}\right)^{c}\right.$.
Fact
If \mathbb{I} is c.c.c. σ-ideal then the outer and inner envelopes exist for any subset of the real line.

Theorem (Brzuchowski,Cichoń,Grzegorek and Ryll-Nardzewski)
Let $\mathbb{I} \sigma$-ideal with the Borel base containing all singletons.
If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\cup \mathcal{A}=\mathbb{R}$.
Then there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is \mathbb{I}-nonmeasurable.
See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C.,
On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic)
Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of $[0,1]$ onto null sets.
Then for every $\epsilon>0$ there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that

$$
\lambda_{*}\left(\bigcup \mathcal{A}^{\prime}\right)<\epsilon \wedge \lambda^{*}\left(\bigcup \mathcal{A}^{\prime}\right)>1-\epsilon .
$$

See: Fremlin D., Todorcevic S., Partition of [0, 1] into negligible sets, 2004, preprint
http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Theorem (Brzuchowski,Cichoń,Grzegorek and Ryll-Nardzewski)
Let $\mathbb{I} \sigma$-ideal with the Borel base containing all singletons.
If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\cup \mathcal{A}=\mathbb{R}$.
Then there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is \mathbb{I}-nonmeasurable.
See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C. On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic)
Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of $[0,1]$ onto null sets.
Then for every $\epsilon>0$ there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that

$$
\lambda_{*}\left(\bigcup \mathcal{A}^{\prime}\right)<\epsilon \wedge \lambda^{*}\left(\bigcup \mathcal{A}^{\prime}\right)>1-\epsilon
$$

See: Fremlin D., Todorcevic S., Partition of [0, 1] into negligible sets, 2004, preprint

Theorem (Brzuchowski,Cichoń,Grzegorek and Ryll-Nardzewski)
Let $\mathbb{I} \sigma$-ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\cup \mathcal{A}=\mathbb{R}$.
Then there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is \mathbb{I}-nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic)
Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of $[0,1]$ onto null sets.
Then for every $\epsilon>0$ there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that

See: Fremlin D., Todorcevic S., Partition of [0, 1] into negligible sets, 2004, preprint

Theorem (Brzuchowski,Cichoń,Grzegorek and Ryll-Nardzewski) Let $\mathbb{I} \sigma$-ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\cup \mathcal{A}=\mathbb{R}$.
Then there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\cup \mathcal{A}^{\prime}$ is \mathbb{I}-nonmeasurable.
See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic) Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of $[0,1]$ onto null sets. Then for every $\epsilon>0$ there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\lambda_{*}\left(\bigcup \mathcal{A}^{\prime}\right)<\epsilon \wedge \lambda^{*}\left(\bigcup \mathcal{A}^{\prime}\right)>1-\epsilon$. See: Fremlin D., Todorcevic S., Partition of $[0,1]$ into negligible sets, 2004, preprint

Theorem (Brzuchowski,Cichoń,Grzegorek and Ryll-Nardzewski) Let $\mathbb{I} \sigma$-ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\cup \mathcal{A}=\mathbb{R}$.
Then there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\cup \mathcal{A}^{\prime}$ is \mathbb{I}-nonmeasurable.
See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448
Theorem (Fremlin, Todorcevic)
Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of $[0,1]$ onto null sets.
Then for every $\epsilon>0$ there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that

See: Fremlin D., Todorcevic S., Partition of $[0,1]$ into negligible sets, 2004, preprint

Theorem (Brzuchowski, Cichoń,Grzegorek and Ryll-Nardzewski)
Let $\mathbb{I} \sigma$-ideal with the Borel base containing all singletons.
If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\cup \mathcal{A}=\mathbb{R}$.
Then there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\cup \mathcal{A}^{\prime}$ is \mathbb{I}-nonmeasurable.
See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C.,
On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448
Theorem (Fremlin, Todorcevic)
Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of $[0,1]$ onto null sets.

See: Fremlin D., Todorcevic S., Partition of $[0,1]$ into negligible sets, 2004, preprint
http://wWW.essex.ac.uk/maths/stafi/Iremlin/preprints.htm

Theorem (Brzuchowski,Cichoń,Grzegorek and Ryll-Nardzewski)

Let $\mathbb{I} \sigma$-ideal with the Borel base containing all singletons.
If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\bigcup \mathcal{A}=\mathbb{R}$.
Then there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is \mathbb{I}-nonmeasurable.
See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C.,
On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic)
Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of $[0,1]$ onto null sets.
Then for every $\epsilon>0$ there exists $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that

$$
\lambda_{*}\left(\bigcup \mathcal{A}^{\prime}\right)<\epsilon \wedge \lambda^{*}\left(\bigcup \mathcal{A}^{\prime}\right)>1-\epsilon .
$$

See: Fremlin D., Todorcevic S., Partition of [0, 1] into negligible sets, 2004, preprint
http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Theorem (Rałowski and Żeberski)
Assume that no cardinal $\kappa<2^{\omega}$ is quasi-measurable.
Assume that \mathbb{I} satisfies c.c.c. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family
such that $\bigcup \mathcal{A} \notin \mathbb{I}$.
Then there exist pairwise disjoint subfamilies $\mathcal{A}_{\xi}, \xi \in \omega_{1}$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$.
See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions,
Central European Journal of Mathematics, 8(4) (2010),
pp.683-687.

Theorem (Rałowski and Żeberski)
Assume that no cardinal $\kappa<2^{\omega}$ is quasi-measurable.
Assume that \mathbb{I} satisfies c.c.c. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family
such that $\bigcup \mathcal{A} \notin \mathbb{I}$.
Then there exist pairwise disjoint subfamilies $\mathcal{A}_{\xi}, \xi \in \omega_{1}$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$. See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions, Central European Journal of Mathematics, 8(4) (2010), pp.683-687.

Theorem (Rałowski and Żeberski)
Assume that no cardinal $\kappa<2^{\omega}$ is quasi-measurable.
Assume that \mathbb{I} satisfies c.c.c. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$.
Then there exist pairwise disjoint subfamilies $\mathcal{A}_{\xi}, \xi \in \omega_{1}$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$. See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions, Central European Journal of Mathematics, 8(4) (2010), pp.683-687.

Theorem (Rałowski and Żeberski)

Assume that no cardinal $\kappa<2^{\omega}$ is quasi-measurable.
Assume that \mathbb{I} satisfies c.c.c. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$.
Then there exist pairwise disjoint subfamilies $\mathcal{A}_{\xi}, \xi \in \omega_{1}$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$.
See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions,
Central European Journal of Mathematics, 8(4) (2010), pp.683-687.

Theorem (Cichoń, Morayne, Ryll-Nardzewski, Żeberski, RR) Any partition of \mathbb{R} onto meager sets has a subfamily $\mathcal{A}^{\prime} \subset \mathcal{A}$ s.t. $\cup \mathcal{A}^{\prime}$ doesn't has Baire property.
Cichoń, Morayne, Ryll-Nardzewski, Zeberski, RR, On nonmeasurable unions, Topology and its Applications, 154 (2007), pp.884-893

Theorem (Cichoń, Morayne, Ryll-Nardzewski, Żeberski, RR) Any partition of \mathbb{R} onto meager sets has a subfamily $\mathcal{A}^{\prime} \subset \mathcal{A}$ s.t. $\cup \mathcal{A}^{\prime}$ doesn't has Baire property.
Cichoń, Morayne, Ryll-Nardzewski, Żeberski, RR, On nonmeasurable unions, Topology and its Applications, 154 (2007), pp.884-893

MAIN INSPIRATION

Theorem (Bukovsky)
Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.
Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,
J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

Main inspiration

Theorem (Bukovsky)
Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.
Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,
J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

MAIN Inspiration

Theorem (Bukovsky)
Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.

Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,
J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

MAIN Inspiration

Theorem (Bukovsky)
Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.
Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,
J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

Definition

\mathcal{A} has (closed splitting property) iff for any $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $] \bigcup \mathcal{A}^{\prime}\left[\mathbb{L} \notin \mathbb{L}\right.$ there exist non-null closed sets $C_{0}, C_{1} \notin \mathbb{L}$ and $\mathcal{A}_{0}, \mathcal{A}_{1} \subseteq \mathcal{A}^{\prime}$ such that $\mathcal{A}_{0} \cap \mathcal{A}_{1}=\emptyset$

$$
(\forall i \in\{0,1\})(] \bigcup \mathcal{A}_{i}\left[\mathbb{L} \backslash C_{i} \in \mathbb{L} \wedge C_{i} \subseteq\right] \bigcup \mathcal{A}_{i}[\mathbb{L})
$$

Definition
\mathcal{A} is regular family iff

Definition

\mathcal{A} has (closed splitting property) iff for any $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $] \bigcup \mathcal{A}^{\prime}\left[\mathbb{L} \notin \mathbb{L}\right.$ there exist non-null closed sets $C_{0}, C_{1} \notin \mathbb{L}$ and $\mathcal{A}_{0}, \mathcal{A}_{1} \subseteq \mathcal{A}^{\prime}$ such that $\mathcal{A}_{0} \cap \mathcal{A}_{1}=\emptyset$

$$
(\forall i \in\{0,1\})(] \bigcup \mathcal{A}_{i}\left[\mathbb{L} \backslash C_{i} \in \mathbb{L} \wedge C_{i} \subseteq\right] \bigcup \mathcal{A}_{i}[\mathbb{L})
$$

Definition
\mathcal{A} is tiny family iff

$$
(\forall B \in \mathbb{L}) \bigcup\{A \in \mathcal{A}: B \cap A \neq \emptyset\} \in \mathbb{L}
$$

Definition

\mathcal{A} is regular family iff

$$
(\forall C-\text { closed }) \bigcup\{A \in \mathcal{A}: A \cap C \neq \emptyset\} \text { is Borel }
$$

Theorem
Let $\mathcal{A} \subseteq P\left(2^{\omega}\right) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

1. \mathcal{A} is regular family,
2. \mathcal{A} has closed splitting property,
3. A is tiny family.

Then there exists subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\cup \mathcal{A}^{\prime} \notin \mathbb{L}$ and $] \bigcup \mathcal{A}^{\prime}[\mathbb{L}=\emptyset$.

Theorem
Let $\mathcal{A} \subseteq P\left(2^{\omega}\right) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

1. \mathcal{A} is regular family,
2. \mathcal{A} has closed splitting property,
3. \mathcal{A} is tiny family.

Then there exists subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime} \notin \mathbb{L}$ and $] \cup \mathcal{A}^{\prime}{ }_{\mathbb{U}}=\emptyset$.

Theorem
Let $\mathcal{A} \subseteq P\left(2^{\omega}\right) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

1. \mathcal{A} is regular family,
2. \mathcal{A} has closed splitting property,
3. \mathcal{A} is tiny family.

Then there exists subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime} \notin \mathbb{L}$ and $] \cup \mathcal{A}^{\prime}{ }_{\mathbb{L}}=\emptyset$.

Proof:

Let κ be smallest cardinality of \mathcal{A} s.t. Theorem is false. $\mathcal{A}=\left\{A_{\alpha}: \alpha<\kappa\right\}$ and define σ-ideal

$$
(\forall X \in P(\kappa))\left(X \in \mathscr{L} \leftrightarrow \bigcup_{\alpha \in X} A_{\alpha} \in \mathbb{L}\right)
$$

Observe that

- if $X \notin \mathscr{L}$ then $] \bigcup_{\alpha \in X} A_{\alpha}[\mathbb{L} \notin \mathbb{L}$ then \mathscr{L} is c.c.c.c
- $\operatorname{add}(\mathscr{L})=\kappa$

Let $P(\mathcal{A})=P(\kappa) / \mathscr{L}$ and $\left(\mathbb{P}_{0}, \leq\right)$ where

$$
\mathbb{P}_{0}=P(\kappa) \backslash \mathscr{L}
$$

and

$$
\left(\forall p, q \in \mathbb{P}_{0}\right)(p \leq q \leftrightarrow p \subseteq q)
$$

Define [.] : $\omega^{<\omega} \rightarrow \mathbb{P}_{0}$ s.t.

- $[\emptyset]=\kappa$ and
- $\left(\forall t, s \in \omega^{<\omega}\right)(t \subset s \rightarrow[s] \leq[t])$ and
- $\left(\forall t, s \in \omega^{<\omega}\right)((t \neq s \wedge|t|=|s|) \rightarrow[s] \cap[t]=\emptyset)$ and
- $(\forall t \in T)\left(\left\{\left[t^{\wedge} n\right]: n \in \omega\right\}\right.$ is maximal antichain in $\left.\mathbb{P}_{0}\right)$ and
- $\left(\forall t \in \omega^{<\omega}\right)\left(\lambda(] \bigcup_{\alpha \in[t]} A_{\alpha}[\mathbb{L})<2^{-|t|}\right)$ and
- $\left(\forall t \in \omega^{<\omega}\right)(\exists C \notin \mathbb{L}) C$ is closed and $] \bigcup_{\alpha \in[t]} A_{\alpha}[\mathbb{L} \backslash C \in \mathbb{L}$.

Because closed splitting and \mathscr{L} is c.c.c. σ-ideal on the κ. Now let \mathbb{P} be a suborder of \mathbb{P}_{0} countably generated (as a σ-field) by the family $\left\{[t]: t \in \omega^{<\omega}\right\}$.

Let $\dot{r} \in V^{\mathbb{P}}$ be the name for the generic real with

$$
[t] \Vdash t \subset \dot{r} \text { for any } t \in \omega^{<\omega}
$$

Let $\dot{R} \in V^{\mathbb{P}}$ - name for set of generic reals

$$
\Vdash \dot{R}=\bigcap\{] \bigcup_{\alpha \in[t]} A_{\alpha}[\mathbb{L}: t \subseteq \dot{r}\} .
$$

By the last condition for [•] we have $\Vdash \dot{R} \neq \emptyset$.

Claim
$(\forall X \in \mathbb{P}) X \Vdash$ " $\dot{R} \subseteq] \bigcup_{\alpha \in X} A_{\alpha}[\mathbb{L} "$.
Proof. By induction over Borel complexity in σ-field \mathbb{P}.
(P, \leq) which is equivalent in the forcing sense (\mathbb{P}, \subseteq) : $B \in P \leftrightarrow \exists X \in \mathbb{P} B=\bigcup_{\alpha \in X} A_{\alpha}$

Definition

Let M be countable elementary submodel of large enough structure $H_{\lambda}\left(|\mathscr{P}(P)|^{+} \leq \lambda\right)$ containing forcing notion $P \in M$ defined above. Then $x \in 2^{\omega}$ is M - genereic real iff
$\{B \in P \cap M: x \in B\}$ generate the $P \cap M$ generic ultrafilter.

Claim

Let M be countable elementary submodel of large enough structure H_{λ} containing forcing notion $P \in M$ defined above. Then for every $B \in P \cap M$ there exists nonnull Borel subset of the following set:

$$
\{x \in B: X \text { is } M \text { - generic real }\} .
$$

Proof

Let $B \in P \cap M, P$ is c.c.c. then is proper.
Find $Q \leq B$ which is $P \cap M$ - generic one.
If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$.
Now consider the following set

$$
C=B \cap \bigcap\{\bigcup\{p: p \in D \cap M\}: D \in M \text { is open dense set }\},
$$

Proof

Let $B \in P \cap M, P$ is c.c.c. then is proper.
Find $Q \leq B$ which is $P \cap M$ - generic one.
If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$.
Now consider the following set

$$
C=B \cap \bigcap\{\bigcup\{p: p \in D \cap M\}: D \in M \text { is open dense set }\}
$$

then one can see that there exists $X_{0} \in \mathbb{P}$ such that $C=\bigcup_{\alpha \in X_{0}} A_{\alpha}$ (because P is an σ-algebra as \mathbb{P} is and M is countable).
Let observe that $C=\{x \in B: x$ is M-generic real. $\}$
Now we show that $C \notin \mathbb{L}$,
if not then the set $\{q: q \Vdash \dot{R} \subseteq B \backslash C\}$ is dense under B and then $B \Vdash \dot{R} \subseteq B \backslash C$.

Proof

Let $B \in P \cap M, P$ is c.c.c. then is proper.
Find $Q \leq B$ which is $P \cap M$ - generic one.
If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$.
Now consider the following set

$$
C=B \cap \bigcap\{\bigcup\{p: p \in D \cap M\}: D \in M \text { is open dense set }\}
$$

then one can see that there exists $X_{0} \in \mathbb{P}$ such that $C=\bigcup_{\alpha \in X_{0}} A_{\alpha}$ (because P is an σ-algebra as \mathbb{P} is and M is countable).
Let observe that $C=\{x \in B: x$ is M-generic real. $\}$
if not then the set $\{q: q \Vdash \dot{R} \subseteq B \backslash C\}$ is dense under B and then

Proof

Let $B \in P \cap M, P$ is c.c.c. then is proper.
Find $Q \leq B$ which is $P \cap M$ - generic one.
If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$.
Now consider the following set

$$
C=B \cap \bigcap\{\bigcup\{p: p \in D \cap M\}: D \in M \text { is open dense set }\}
$$

then one can see that there exists $X_{0} \in \mathbb{P}$ such that $C=\bigcup_{\alpha \in X_{0}} A_{\alpha}$ (because P is an σ-algebra as \mathbb{P} is and M is countable).
Let observe that $C=\{x \in B: x$ is M-generic real. $\}$
Now we show that $C \notin \mathbb{L}$,
if not then the set $\{q: q \Vdash \dot{R} \subseteq B \backslash C\}$ is dense under B and then $B \Vdash \dot{R} \subseteq B \backslash C$.

From the other side take any $G \ni Q-P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $q \Vdash \dot{R} \subseteq q \subseteq p$.

From the other side take any $G \ni Q-P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $q \Vdash \dot{R} \subseteq q \subseteq p$.
Then $V[G] \models(\forall p \in G \cap M) \dot{R}_{G} \subseteq p$.
 proof.

From the other side take any $G \ni Q-P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $q \Vdash \dot{R} \subseteq q \subseteq p$.
Then $V[G] \models(\forall p \in G \cap M) \dot{R}_{G} \subseteq p$.
But $q \Vdash G \cap M \cap D \neq \emptyset$ for every dense open set $D \in M$. Then $\left\{p \in P \cap M: \dot{R}_{G} \subseteq p\right\}$ forms the $P \cap M$ generic filter over M and we have $V[G] \vDash \dot{R}_{G} \subseteq C$.

From the other side take any $G \ni Q-P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $q \Vdash \dot{R} \subseteq q \subseteq p$.
Then $V[G] \models(\forall p \in G \cap M) \dot{R}_{G} \subseteq p$.
But $q \Vdash G \cap M \cap D \neq \emptyset$ for every dense open set $D \in M$. Then $\left\{p \in P \cap M: \dot{R}_{G} \subseteq p\right\}$ forms the $P \cap M$ generic filter over M and we have $V[G] \vDash \dot{R}_{G} \subseteq C$.
But $G \ni Q$ was choosen arbitrary and then $Q \Vdash \dot{R} \subseteq C$ but $Q \leq B$ then we have $Q \Vdash \dot{R} \subseteq B \backslash C$ also, contradiction.

From the other side take any $G \ni Q-P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $q \Vdash \dot{R} \subseteq q \subseteq p$.
Then $V[G] \models(\forall p \in G \cap M) \dot{R}_{G} \subseteq p$.
But $q \Vdash G \cap M \cap D \neq \emptyset$ for every dense open set $D \in M$. Then $\left\{p \in P \cap M: \dot{R}_{G} \subseteq p\right\}$ forms the $P \cap M$ generic filter over M and we have $V[G] \vDash \dot{R}_{G} \subseteq C$.
But $G \ni Q$ was choosen arbitrary and then $Q \Vdash \dot{R} \subseteq C$ but $Q \leq B$ then we have $Q \Vdash \dot{R} \subseteq B \backslash C$ also, contradiction.
We have proved that $C \notin \mathbb{L}$ then $] C_{[\mathbb{L}} \in$ Borel $\backslash \mathbb{L}$ what finishes the proof.

Claim (Borel reading names)

Let \dot{x} be any \mathbb{P} - name s.t. $\Vdash \dot{x} \in 2^{\omega}$. Let us choose any condition $B \in \mathbb{P}$ and let \dot{s} be any \mathbb{P}-name s.t. $\Vdash \dot{s} \in \dot{R}$. Then there exists a stronger condition $C \in \mathbb{P}$, Borel nonnull set $D \subseteq] \bigcup_{\alpha \in C} A_{\alpha}[\mathbb{L}$ and Borel function $f: D \rightarrow 2^{\omega}$ coded in the ground model V such that $f\left(\dot{s}_{G}\right)=\dot{x}_{G}$ in any generic extension $V[G]$.

Proof. Let $B \in P, M \prec H_{\lambda}$ for large λ s.t. $\left(2^{|P|}\right)^{+}<\lambda$ with
$P, B \in M$.
Find $C \leq B$ (master condition) by previous Claim.
Consider an open base \mathscr{O}. Let

$$
\begin{gathered}
f_{O}^{+}=\bigcup\{] p[\mathbb{L} \times O: \quad p \in P \cap M \wedge p \Vdash \dot{x} \in \check{O}\} \\
f_{O}^{-}=\bigcup\{] p\left[\mathbb{L} \times 2^{\omega} \backslash O: \quad p \in P \cap M \wedge p \Vdash \dot{x} \notin \check{O}\right\}
\end{gathered}
$$

for any $O \in \mathscr{O}$.
M is countable then $f=\bigcap_{O \in \mathscr{O}}\left(f_{O}^{+} \cup f_{O}^{-}\right)$is Borel function and
$C \subseteq \operatorname{dom}(f)$ and $f(r)=x_{G}$ where G is as in the definition for M generic real.

Remark
For fixed large enough $M \prec H_{\lambda}$ and any $G-P$ generic $/ V, f$ is a constant on \dot{R}_{G}

$$
\dot{R}_{G} \subset \bigcap(G \cap M) \text { and } \dot{R}_{G} \subset\{x: x \text { is } M \text { generic real }\}
$$

Claim $P(\mathcal{A}) \Vdash 2^{\omega} \cap V$ is nonnull.

Proof

If not then $] \cup \mathcal{A}\left[\mathbb{L} \cap V \in \mathbb{L}\right.$ in $V[G]$ but $(\bigcup \mathcal{A} \notin \mathbb{L})^{V}$. Take a Borel
set $B \in \mathbb{L}\left(2^{\omega} \times 2^{\omega}\right)$ coded in V s.t. $] \cup \mathcal{A} \cap V\left[\mathbb{L}=B_{s}\right.$ where $s=\dot{s}_{G}$ with $\| \dot{s} \in \dot{R}$.
Take $x \in] \cup \mathcal{A}[\mathbb{L} \cap V$. Then we have

$$
x \in B_{s} \leftrightarrow(s, x) \in B \leftrightarrow s \in B^{x}
$$

and we have $R \subseteq B^{\times}$(f is constant on $R_{G} f$-Borel reading names).
$B^{\times} \notin \mathbb{L}$.
If not then there exists $p \in G$ such that $p \|-\dot{R} \subseteq B^{\times}$and
$p \|-\dot{R} \subseteq] U_{a \in p} A_{\alpha}[t$.
By find $G \ni q \leq p$ such that $q \Vdash-] \bigcup_{\alpha \in q} A_{\alpha}\left[\cap B^{\times}=\emptyset\right.$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}\left[\llbracket\right.$. but $q \Vdash \dot{R} \subseteq B^{\times}$what is impossible.

$$
] \bigcup \mathcal{A}\left[\in V \subseteq\left\{x \in 2^{\omega}: B^{x} \notin \mathbb{L}\right\}\right.
$$

but the last set is in the σ-ideal \mathbb{L} by Fubini property and then $\bigcup \mathcal{A} \in \mathbb{L}$ in the ground model what is contradiction.

Proof

If not then $] \cup \mathcal{A}\left[\mathbb{L} \cap V \in \mathbb{L}\right.$ in $V[G]$ but $(\cup \mathcal{A} \notin \mathbb{L})^{V}$. Take a Borel set $B \in \mathbb{L}\left(2^{\omega} \times 2^{\omega}\right)$ coded in V s.t. $] \cup \mathcal{A} \cap V\left[{ }_{\mathbb{L}}=B_{s}\right.$ where $s=\dot{s}_{G}$ with $\Vdash \dot{s} \in \dot{R}$.
Take $x \in] \cup \mathcal{A}[\mathbb{L} \cap V$. Then we have
and we have $R \subseteq B^{\times}$(f is constant on $\dot{R}_{G} f$-Borel reading names).
$B^{\times} \notin \mathbb{L}$.
If not then there exists $p \in G$ such that $p \|^{-1} \dot{R} \subseteq B^{x}$ and
$p \Vdash R \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\amalg$.
By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}\left[\cap B^{\times}=\emptyset\right.$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}\left[\mathbb{L}\right.$ but $q \Vdash \dot{R} \subseteq B^{\times}$what is impossible.

but the last set is in the σ-ideal \mathbb{L} by Fubini property and then $\bigcup \mathcal{A} \in \mathbb{L}$ in the ground model what is contradiction.

Proof

If not then $] \cup \mathcal{A}\left[\mathbb{L} \cap V \in \mathbb{L}\right.$ in $V[G]$ but $(\cup \mathcal{A} \notin \mathbb{L})^{V}$. Take a Borel set $B \in \mathbb{L}\left(2^{\omega} \times 2^{\omega}\right)$ coded in V s.t. $] \cup \mathcal{A} \cap V\left[{ }_{\mathbb{L}}=B_{s}\right.$ where $s=\dot{s}_{G}$ with $\Vdash \dot{s} \in \dot{R}$.
Take $x \in] \cup \mathcal{A}[\mathbb{L} \cap V$. Then we have

$$
x \in B_{s} \leftrightarrow(s, x) \in B \leftrightarrow s \in B^{x}
$$

and we have $R \subseteq B^{\times}$(f is constant on $\dot{R}_{G} f$-Borel reading names).
If not then there exists $p \in G$ such that $p \Vdash \dot{R} \subseteq B^{\times}$and $p \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\mathbb{L}$. By find $G \ni q \leq p$ such that $q \|-] \bigcup_{a \in q} A_{a}\left[\cap B^{x}=0\right.$ and also $q \| \dot{R} \subseteq] \bigcup_{a \in q} A_{a}\left[\right.$ but $q \| \dot{R} \subseteq B^{\times}$what is impossible.

but the last set is in the σ-ideal \mathbb{L} by Fubini property and then $\bigcup \mathcal{A} \in \mathbb{L}$ in the ground model what is contradiction.

Proof

If not then $] \cup \mathcal{A}\left[\mathbb{L} \cap V \in \mathbb{L}\right.$ in $V[G]$ but $(\bigcup \mathcal{A} \notin \mathbb{L})^{V}$. Take a Borel set $B \in \mathbb{L}\left(2^{\omega} \times 2^{\omega}\right)$ coded in V s.t. $] \cup \mathcal{A} \cap V\left[{ }_{\mathbb{L}}=B_{s}\right.$ where $s=\dot{s}_{G}$ with $\Vdash \dot{s} \in \dot{R}$.
Take $x \in] \cup \mathcal{A}[\mathbb{L} \cap V$. Then we have

$$
x \in B_{s} \leftrightarrow(s, x) \in B \leftrightarrow s \in B^{x}
$$

and we have $R \subseteq B^{\times}$(f is constant on $\dot{R}_{G} f$-Borel reading names). $B^{\times} \notin \mathbb{L}$.
If not then there exists $p \in G$ such that $p \Vdash \dot{R} \subseteq B^{\times}$and
$p \| R \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\amalg$
By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}\left[\cap B^{x}=\emptyset\right.$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}\left[\mathbb{L}\right.$ but $q \Vdash \dot{R} \subseteq B^{\times}$what is impossible.

but the last set is in the σ-ideal \mathbb{L} by Fubini property and then $\bigcup \mathcal{A} \in \mathbb{L}$ in the ground model what is contradiction.

Proof

If not then $] \cup \mathcal{A}\left[\mathbb{L} \cap V \in \mathbb{L}\right.$ in $V[G]$ but $(\bigcup \mathcal{A} \notin \mathbb{L})^{V}$. Take a Borel set $B \in \mathbb{L}\left(2^{\omega} \times 2^{\omega}\right)$ coded in V s.t. $] \bigcup \mathcal{A} \cap V\left[\mathbb{L}=B_{s}\right.$ where $s=\dot{s}_{G}$ with $\Vdash \dot{s} \in \dot{R}$.
Take $x \in] \cup \mathcal{A}[\mathbb{L} \cap V$. Then we have

$$
x \in B_{s} \leftrightarrow(s, x) \in B \leftrightarrow s \in B^{x}
$$

and we have $R \subseteq B^{\times}$(f is constant on $\dot{R}_{G} f$-Borel reading names). $B^{x} \notin \mathbb{L}$.
If not then there exists $p \in G$ such that $p \Vdash \dot{R} \subseteq B^{x}$ and $p \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\mathbb{L}$.
By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}\left[\cap B^{\times}=\emptyset\right.$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}\left[\mathbb{L}\right.$ but $q \Vdash \dot{R} \subseteq B^{x}$ what is impossible.

Proof

If not then $] \bigcup \mathcal{A}\left[\mathbb{L} \cap V \in \mathbb{L}\right.$ in $V[G]$ but $(\bigcup \mathcal{A} \notin \mathbb{L})^{V}$. Take a Borel set $B \in \mathbb{L}\left(2^{\omega} \times 2^{\omega}\right)$ coded in V s.t. $] \cup \mathcal{A} \cap V\left[\mathbb{L}=B_{s}\right.$ where $s=\dot{s}_{G}$ with $\Vdash \dot{s} \in \dot{R}$.
Take $x \in] \bigcup \mathcal{A}[\mathbb{L} \cap V$. Then we have

$$
x \in B_{s} \leftrightarrow(s, x) \in B \leftrightarrow s \in B^{x}
$$

and we have $R \subseteq B^{\times}$(f is constant on $\dot{R}_{G} f$-Borel reading names). $B^{x} \notin \mathbb{L}$.
If not then there exists $p \in G$ such that $p \Vdash \dot{R} \subseteq B^{x}$ and $p \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\mathbb{L}$.
By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}\left[\cap B^{\times}=\emptyset\right.$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}\left[\mathbb{L}\right.$ but $q \Vdash \dot{R} \subseteq B^{x}$ what is impossible.

$$
] \bigcup \mathcal{A}\left[\mathbb{L} \cap V \subseteq\left\{x \in 2^{\omega}: B^{x} \notin \mathbb{L}\right\}\right.
$$

but the last set is in the σ-ideal \mathbb{L} by Fubini property and then $\bigcup \mathcal{A} \in \mathbb{L}$ in the ground model what is contradiction.

Generic ultrapower

Now let us consider any $G-\mathbb{P}$ generic ultrafilter over V.

```
L is }\kappa\mathrm{ -complete ideal on }\kappa\mathrm{ .
Our forcing is c.c.c. then is }\mp@subsup{\kappa}{}{+}\mathrm{ - saturated one then the
ultrapower Ult(V,G) is wellfounded.
Consider j : V \UIt(V,G) elementary embedding, cp}(j)=\kappa\mathrm{ .
We have that }x=j(x)\inj(\mp@subsup{A}{\alpha}{})\mathrm{ by elementarity of J.
In Ult(V,G) \bigcup\mathcal{A}\subseteq\bigcup \bigcup \<\kappa }j(\mp@subsup{A}{\alpha}{})\in\mathbb{L}\mathrm{ by }\kappa<j(\kappa
and}\mp@subsup{\bigcup}{\alpha<\kappa}{}\mp@subsup{A}{\alpha}{}\in\mathbb{L}\mathrm{ is a null set.
Then by absolutnes of Borel codes of null sets between transitive
ZFC models we have }\mp@subsup{\bigcup}{\alpha<\kappa}{}\mp@subsup{A}{\alpha}{}\in\mathbb{L}\mathrm{ in V[G] what is impossible by
the last Claim.
```


Generic ultrapower

Now let us consider any $G-\mathbb{P}$ generic ultrafilter over V. \mathscr{L} is κ-complete ideal on κ.

```
Our forcing is c.c.c. then is }\mp@subsup{\kappa}{}{+}\mathrm{ - saturated one then the
ultrapower Ult (V,G) is wellfounded.
Consider j:V \Ult(V,G) elementary embedding, cp}(j)=k
We have that }x=j(x)\inj(\mp@subsup{A}{\alpha}{})\mathrm{ by elementarity of J.
In Ult (V,G) \bigcup\mathcal{A}\subseteq\mp@subsup{\bigcup}{\alpha<\kappa}{}j(\mp@subsup{A}{\alpha}{})\in\mathbb{L}\mathrm{ by }\kappa<j(\kappa)
and}\mp@subsup{\bigcup}{0<r}{}\mp@subsup{A}{\alpha}{}\in\mathbb{L}\mathrm{ is a null set.
Then by absolutnes of Borel codes of null sets between transitive
ZFC models we have }\mp@subsup{\bigcup}{\alpha<\kappa}{}\mp@subsup{A}{\alpha}{}\in\mathbb{L}\mathrm{ in V[G] what is impossible by
the last Claim.
```


Generic ultrapower

Now let us consider any $G-\mathbb{P}$ generic ultrafilter over V. \mathscr{L} is κ-complete ideal on κ.
Our forcing is c.c.c. then is κ^{+}- saturated one then the ultrapower $U / t(V, G)$ is wellfounded.

```
Consider \(j: V \rightarrow U I t(V, G)\) elementary embedding, \(c p(j)=\kappa\)
We have that \(x=j(x) \in j\left(A_{\alpha}\right)\) by elementarity of \(J\).
In \(U l t(V, G) \bigcup \mathcal{A} \subseteq \bigcup_{N<\kappa} j\left(A_{\alpha}\right) \in \mathbb{L}\) by \(\kappa<j(\kappa)\)
and \(\bigcup_{\alpha<k} A_{\alpha} \in \mathbb{L}\) is a null set.
Then by absolutnes of Borel codes of null sets between transitive
ZFC models we have \(\bigcup_{\alpha<\kappa} A_{\alpha} \in \mathbb{L}\) in \(V[G]\) what is impossible by
the last Claim.
```


Generic ultrapower

Now let us consider any $G-\mathbb{P}$ generic ultrafilter over V.
\mathscr{L} is κ-complete ideal on κ.
Our forcing is c.c.c. then is κ^{+}- saturated one then the ultrapower $U / t(V, G)$ is wellfounded.
Consider $j: V \rightarrow U / t(V, G)$ elementary embedding, $c p(j)=\kappa$.

Generic ultrapower

Now let us consider any $G-\mathbb{P}$ generic ultrafilter over V.
\mathscr{L} is κ-complete ideal on κ.
Our forcing is c.c.c. then is κ^{+}- saturated one then the ultrapower $U / t(V, G)$ is wellfounded.
Consider $j: V \rightarrow U / t(V, G)$ elementary embedding, $c p(j)=\kappa$.
We have that $x=j(x) \in j\left(A_{\alpha}\right)$ by elementarity of J.
In $U l t(V, G) \bigcup \mathcal{A} \subseteq \bigcup_{\alpha<\kappa} j\left(A_{\alpha}\right) \in \mathbb{L}$ by $\kappa<j(\kappa)$
Then by absolutnes of Borel codes of null sets between transitive ZFC models we have the last Claim.

Generic ultrapower

Now let us consider any $G-\mathbb{P}$ generic ultrafilter over V.
\mathscr{L} is κ-complete ideal on κ.
Our forcing is c.c.c. then is κ^{+}- saturated one then the ultrapower $U / t(V, G)$ is wellfounded.
Consider $j: V \rightarrow U / t(V, G)$ elementary embedding, $c p(j)=\kappa$.
We have that $x=j(x) \in j\left(A_{\alpha}\right)$ by elementarity of J.
In $U l t(V, G) \cup \mathcal{A} \subseteq \bigcup_{\alpha<\kappa} j\left(A_{\alpha}\right) \in \mathbb{L}$ by $\kappa<j(\kappa)$ and $\bigcup_{\alpha<\kappa} A_{\alpha} \in \mathbb{L}$ is a null set.
Then by absolutnes of Borel codes of null sets between transitive ZFC models we have $\bigcup_{a<k} A_{\alpha} \in \mathbb{L}$ in $V[G]$ what is impossible by the last Claim.

Generic ultrapower

Now let us consider any $G-\mathbb{P}$ generic ultrafilter over V.
\mathscr{L} is κ-complete ideal on κ.
Our forcing is c.c.c. then is κ^{+}- saturated one then the ultrapower $U / t(V, G)$ is wellfounded.
Consider $j: V \rightarrow U / t(V, G)$ elementary embedding, $c p(j)=\kappa$.
We have that $x=j(x) \in j\left(A_{\alpha}\right)$ by elementarity of J.
In $\operatorname{Ult}(V, G) \cup \mathcal{A} \subseteq \bigcup_{\alpha<\kappa} j\left(A_{\alpha}\right) \in \mathbb{L}$ by $\kappa<j(\kappa)$ and $\bigcup_{\alpha<\kappa} A_{\alpha} \in \mathbb{L}$ is a null set.
Then by absolutnes of Borel codes of null sets between transitive ZFC models we have $\bigcup_{\alpha<\kappa} A_{\alpha} \in \mathbb{L}$ in $V[G]$ what is impossible by the last Claim.

Theorem
Let $\mathcal{A} \subseteq P\left(2^{\omega}\right) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

1. \mathcal{A} is regular family,
2. \mathcal{A} has closed splitting property,
3. \mathcal{A} is tiny family.

Then there exists subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\cup \mathcal{A}^{\prime}$ is completely nonmeasurable.

Theorem
Let $\mathcal{A} \subseteq P\left(2^{\omega}\right) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

1. \mathcal{A} is regular family,
2. \mathcal{A} has closed splitting property,
3. \mathcal{A} is tiny family.

Then there exists subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\cup \mathcal{A}^{\prime}$ is completely nonmeasurable.

Theorem
Let $\mathcal{A} \subseteq P\left(2^{\omega}\right) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

1. \mathcal{A} is regular family,
2. \mathcal{A} has closed splitting property,
3. \mathcal{A} is tiny family.

Then there exists subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is completely nonmeasurable.

Claim
Assume that $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ s.t. $\left[\bigcup \mathcal{A}^{\prime}\right]_{\mathbb{L}} \neq \mathbb{R}$. Then

$$
\left.\left(\exists \mathscr{B} \subseteq \mathcal{A} \backslash \mathcal{A}^{\prime}\right) \bigcup \mathscr{B} \backslash\left[\bigcup \mathcal{A}^{\prime}\right]_{\mathbb{L}} \notin \mathbb{L} \wedge\right] \bigcup \mathscr{B}\left[\mathbb{L}\left(\mathcal{A} \backslash \mathcal{A}^{\prime}\right)=\emptyset\right.
$$

Thank You
（R）Brzuchowski J．，Cichoń J．，Grzegorek E．，Ryll－Nardzewski C．， On the existence of nonmeasurable unions，Bull．Polish Acad． Sci．Math．1979，27，447－448
囦 Bukovsky L．，，Bull．Polish Acad．Sci．Math．1979， 27 ，
Richoń J．，Morayne M．，Rałowski R．，Ryll－Nardzewski C．， Żeberski S．，On nonmeasurable unions，Topol．and Its Appl．， 2007，154，884－893
围 Fremlin D．，Todorcevic S．，Partition of［0，1］into negligible sets，2004，preprint is avaible on the web page http：／／www．essex．ac．uk／maths／staff／fremlin／preprints．ht

目 T．Bartoszynski，H．Judah，S．Shelah，The Cichon Diagram，J． Symbolic Logic vol． 58 （2）（1993），pp．401－423，
圊 J．Cichoń，On two－cardinal properties of ideals，Trans．Am． Math．Soc．vol 314，no． 2 （1989），pp 693－708，
围 R．Rałowski，Sz．Żeberski，Completely nonmeasurable unions， Central European Journal of Mathematics，8（4）（2010）， pp．683－687．

