Partitions on the real line

Robert Rałowski and Szymon Żeberski

Winter School in Abstract Analysis section Set Theory Hejnice 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition (Cardinal coefficients) For any $I \subset \mathscr{P}(X)$ let

$$non(I) = min\{|A| : A \subset X \land A \notin I\}$$
$$add(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land \bigcup \mathscr{A} \notin I\}$$
$$cov(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land \bigcup \mathscr{A} = X\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \mathbbm{L} - σ ideal of null sets

We say that *C* is completely \mathbb{I} -nonmeasurable in *D* iff for any \mathbb{I} -positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \setminus C$ are \mathbb{I} -positive.

Definition (outer, inner envelope)

Let $\mathbb{I} \sigma$ -ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_{\mathbb{I}} = B$ is **outer envelope** of D iff

- 1. $D \subseteq B$ and B is a Borel set with $B \setminus D \in \mathbb{I}$ and
- 2. if $D \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$.

Define $]D[_{\mathbb{I}}$ as an **inner envelope** od D iff $]D[_{\mathbb{I}}=([D^c]_{\mathbb{I}})^c$.

Fact

If $\mathbb I$ is c.c.c. $\sigma\text{-ideal}$ then the outer and inner envelopes exist for any subset of the real line.

We say that *C* is completely \mathbb{I} -nonmeasurable in *D* iff for any \mathbb{I} -positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \setminus C$ are \mathbb{I} -positive.

Definition (outer, inner envelope)

Let $I \sigma$ -ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_I = B$ is **outer envelope** of D iff

1. $D \subseteq B$ and B is a Borel set with $B \setminus D \in \mathbb{I}$ and

2. if $D \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$.

Define $]D[_{\mathbb{I}}$ as an **inner envelope** od D iff $]D[_{\mathbb{I}}=([D^c]_{\mathbb{I}})^c$.

Fact

If \mathbb{I} is c.c.c. σ -ideal then the outer and inner envelopes exist for any subset of the real line.

We say that *C* is completely \mathbb{I} -nonmeasurable in *D* iff for any \mathbb{I} -positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \setminus C$ are \mathbb{I} -positive.

Definition (outer, inner envelope)

Let $I \sigma$ -ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_I = B$ is **outer envelope** of D iff

1. $D \subseteq B$ and B is a Borel set with $B \setminus D \in \mathbb{I}$ and

2. if $D \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$. Define $]D[_{\mathbb{I}}$ as an **inner envelope** od D iff $]D[_{\mathbb{I}}=([D^c]_{\mathbb{I}})^c$.

Fact

If $\mathbb I$ is c.c.c. $\sigma\text{-ideal}$ then the outer and inner envelopes exist for any subset of the real line.

We say that *C* is completely \mathbb{I} -nonmeasurable in *D* iff for any \mathbb{I} -positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \setminus C$ are \mathbb{I} -positive.

Definition (outer, inner envelope)

Let $I \sigma$ -ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_I = B$ is **outer envelope** of D iff

- 1. $D \subseteq B$ and B is a Borel set with $B \setminus D \in \mathbb{I}$ and
- 2. if $D \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$.

Define $]D[_{\mathbb{I}}$ as an **inner envelope** od D iff $]D[_{\mathbb{I}}=([D^c]_{\mathbb{I}})^c$.

Fact

If $\mathbb I$ is c.c.c. $\sigma\text{-ideal}$ then the outer and inner envelopes exist for any subset of the real line.

We say that *C* is completely \mathbb{I} -nonmeasurable in *D* iff for any \mathbb{I} -positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \setminus C$ are \mathbb{I} -positive.

Definition (outer, inner envelope)

Let $I \sigma$ -ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_I = B$ is **outer envelope** of D iff

- 1. $D \subseteq B$ and B is a Borel set with $B \setminus D \in \mathbb{I}$ and
- 2. if $D \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$.

Define $]D[_{\mathbb{I}}$ as an **inner envelope** od D iff $]D[_{\mathbb{I}}=([D^c]_{\mathbb{I}})^c$.

Fact

If $\mathbb I$ is c.c.c. $\sigma\text{-ideal}$ then the outer and inner envelopes exist for any subset of the real line.

We say that *C* is completely \mathbb{I} -nonmeasurable in *D* iff for any \mathbb{I} -positive relative Borel subset $B \subseteq D$ both sets $B \cap C$ and $B \setminus C$ are \mathbb{I} -positive.

Definition (outer, inner envelope)

Let $I \sigma$ -ideal and any $D \subseteq \mathbb{R}$ we can define $[D]_I = B$ is **outer envelope** of D iff

- 1. $D \subseteq B$ and B is a Borel set with $B \setminus D \in \mathbb{I}$ and
- 2. if $D \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$.

Define $]D[_{\mathbb{I}}$ as an **inner envelope** od D iff $]D[_{\mathbb{I}}=([D^c]_{\mathbb{I}})^c$.

Fact

If $\mathbb I$ is c.c.c. $\sigma\text{-ideal}$ then the outer and inner envelopes exist for any subset of the real line.

Let $\mathbb{I} \sigma$ -ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\bigcup \mathcal{A} = \mathbb{R}$. Then there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is \mathbb{I} -nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C. On the existence of nonmeasurable unions, Bull. Polish Acad. Sci

Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic)

Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of [0,1] onto null sets. Then for every $\epsilon > 0$ there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that

$$\lambda_*(\bigcup \mathcal{A}') < \epsilon \wedge \lambda^*(\bigcup \mathcal{A}') > 1 - \epsilon.$$

See: Fremlin D., Todorcevic S., Partition of [0,1] into negligible sets, 2004, preprint http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Theorem (Brzuchowski, Cichoń, Grzegorek and Ryll-Nardzewski) Let I σ -ideal with the Borel base containing all singletons. If $A \subseteq L$ be any finite point family with $\bigcup A = \mathbb{R}$. Then there exists $A' \subseteq A$ such that $\bigcup A'$ is I-nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (FremIin, Todorcevic) Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of [0,1] onto null sets Then for every $\epsilon > 0$ there exists $\mathcal{A}' \subseteq \mathcal{A}$ such the

$$\lambda_*(\bigcup \mathcal{A}') < \epsilon \wedge \lambda^*(\bigcup \mathcal{A}') > 1 - \epsilon.$$

See: Fremlin D., Todorcevic S., Partition of [0,1] into negligible sets, 2004, preprint http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Theorem (Brzuchowski, Cichoń, Grzegorek and Ryll-Nardzewski) Let I σ -ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\bigcup \mathcal{A} = \mathbb{R}$. Then there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is I-nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of [0, 1] onto null sets. Then for every $\epsilon > 0$ there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that

$$\lambda_*(\bigcup \mathcal{A}') < \epsilon \land \lambda^*(\bigcup \mathcal{A}') > 1 - \epsilon.$$

See: Fremlin D., Todorcevic S., Partition of [0,1] into negligible sets, 2004, preprint http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Let $\mathbb{I} \sigma$ -ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\bigcup \mathcal{A} = \mathbb{R}$. Then there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is \mathbb{I} -nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic)

Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of [0,1] onto null sets. Then for every $\epsilon > 0$ there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that

$$\lambda_*(\bigcup \mathcal{A}') < \epsilon \land \lambda^*(\bigcup \mathcal{A}') > 1 - \epsilon.$$

See: Fremlin D., Todorcevic S., Partition of [0,1] into negligible sets, 2004, preprint http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Let $\mathbb{I} \sigma$ -ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\bigcup \mathcal{A} = \mathbb{R}$. Then there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is \mathbb{I} -nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic)

Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of [0,1] onto null sets. Then for every $\epsilon > 0$ there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that

$$\lambda_*(\bigcup \mathcal{A}') < \epsilon \land \lambda^*(\bigcup \mathcal{A}') > 1 - \epsilon.$$

See: Fremlin D., Todorcevic S., Partition of [0,1] into negligible sets, 2004, preprint http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Let $\mathbb{I} \sigma$ -ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\bigcup \mathcal{A} = \mathbb{R}$. Then there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is \mathbb{I} -nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic) Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of [0,1] onto null sets. Then for every $\epsilon > 0$ there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that

$$\lambda_*(\bigcup \mathcal{A}') < \epsilon \wedge \lambda^*(\bigcup \mathcal{A}') > 1 - \epsilon.$$

See: Fremlin D., Todorcevic S., Partition of [0,1] into negligible
sets, 2004, preprint
http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Let $\mathbb{I} \sigma$ -ideal with the Borel base containing all singletons. If $\mathcal{A} \subseteq \mathbb{L}$ be any finite point family with $\bigcup \mathcal{A} = \mathbb{R}$. Then there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is \mathbb{I} -nonmeasurable. See: Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448

Theorem (Fremlin, Todorcevic) Let $\mathcal{A} \subseteq \mathbb{L}$ be any partition of [0, 1] onto null sets. Then for every $\epsilon > 0$ there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that

$$\lambda_*(\bigcup \mathcal{A}') < \epsilon \wedge \lambda^*(\bigcup \mathcal{A}') > 1 - \epsilon.$$

See: Fremlin D., Todorcevic S., Partition of [0, 1] into negligible
sets, 2004, preprint
http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Assume that no cardinal $\kappa < 2^{\omega}$ is quasi-measurable. Assume that I satisfies c.c.c. Let $\mathcal{A} \subseteq I$ be a point-finite family such that $\bigcup \mathcal{A} \notin I$. Then there exist pairwise disjoint subfamilies $\mathcal{A}_{\xi}, \xi \in \omega_1$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely I-nonmeasurable in $\bigcup \mathcal{A}$. See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions, Central European Journal of Mathematics, 8(4) (2010), pp.683-687.

Assume that no cardinal $\kappa < 2^{\omega}$ is quasi-measurable.

Assume that I satisfies c.c.c. Let $\mathcal{A} \subseteq I$ be a point-finite family such that $\bigcup \mathcal{A} \notin I$. Then there exist pairwise disjoint subfamilies $\mathcal{A}_{\xi}, \xi \in \omega_1$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely I-nonmeasurable in $\bigcup \mathcal{A}$. See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions, Central European Journal of Mathematics, 8(4) (2010), pp.683-687.

Assume that no cardinal $\kappa < 2^{\omega}$ is quasi-measurable. Assume that \mathbb{I} satisfies c.c.c. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$.

Then there exist pairwise disjoint subfamilies \mathcal{A}_{ξ} , $\xi \in \omega_1$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely I-nonmeasurable in $\bigcup \mathcal{A}$. See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions, Central European Journal of Mathematics, 8(4) (2010), pp.683-687.

Assume that no cardinal $\kappa < 2^{\omega}$ is quasi-measurable. Assume that I satisfies c.c.c. Let $\mathcal{A} \subseteq I$ be a point-finite family such that $\bigcup \mathcal{A} \notin I$. Then there exist pairwise disjoint subfamilies $\mathcal{A}_{\xi}, \xi \in \omega_1$ of \mathcal{A} such that each of the union $\bigcup \mathcal{A}_{\xi}$ is completely I-nonmeasurable in $\bigcup \mathcal{A}$. See: R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions, Central European Journal of Mathematics, 8(4) (2010), pp.683-687.

Theorem (Cichoń, Morayne, Ryll-Nardzewski, Żeberski, RR) Any partition of \mathbb{R} onto meager sets has a subfamily $\mathcal{A}' \subset \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ doesn't has Baire property.

Cichoń, Morayne, Ryll-Nardzewski, Żeberski, RR, On nonmeasurable unions, Topology and its Applications, 154 (2007), pp.884-893

- Theorem (Cichoń, Morayne, Ryll-Nardzewski, Żeberski, RR) Any partition of \mathbb{R} onto meager sets has a subfamily $\mathcal{A}' \subset \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ doesn't has Baire property.
- Cichoń, Morayne, Ryll-Nardzewski, Żeberski, RR, On nonmeasurable unions, Topology and its Applications, 154 (2007), pp.884-893

Theorem (Bukovsky)

Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.

Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,

J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Bukovsky)

Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.

Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,

J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Bukovsky)

Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.

Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,

J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

Theorem (Bukovsky)

Every partition of the real line \mathbb{R} onto null sets has subpartition for which union is nonmeasurable.

Bukovsky L., Any partition into Lebesgue meazure zero sets producec a nonmeasurable set, Bull. Polish Acad. Sci. Math. 1979, 27,

J. Zapletal, Forcing idealized, Cambrigde University Press, 2008

 \mathcal{A} has (closed splitting property) iff for any $\mathcal{A}' \subseteq \mathcal{A}$ such that $] \bigcup \mathcal{A}'[_{\mathbb{L}} \notin \mathbb{L}$ there exist non-null closed sets $C_0, C_1 \notin \mathbb{L}$ and $\mathcal{A}_0, \mathcal{A}_1 \subseteq \mathcal{A}'$ such that $\mathcal{A}_0 \cap \mathcal{A}_1 = \emptyset$

 $(\forall i \in \{0,1\})(] \bigcup \mathcal{A}_i[\mathbb{L} \setminus C_i \in \mathbb{L} \land C_i \subseteq] \bigcup \mathcal{A}_i[\mathbb{L})$

Definition \mathcal{A} is **tiny family** i

 $(\forall B \in \mathbb{L}) \ \bigcup \{A \in \mathcal{A} : B \cap A \neq \emptyset\} \in \mathbb{L}.$

Definition \mathcal{A} is **regular family** if

 $(\forall C - \text{closed}) \bigcup \{A \in \mathcal{A} : A \cap C \neq \emptyset\}$ is Borel

 \mathcal{A} has (closed splitting property) iff for any $\mathcal{A}' \subseteq \mathcal{A}$ such that $] \bigcup \mathcal{A}'[_{\mathbb{L}} \notin \mathbb{L}$ there exist non-null closed sets $C_0, C_1 \notin \mathbb{L}$ and $\mathcal{A}_0, \mathcal{A}_1 \subseteq \mathcal{A}'$ such that $\mathcal{A}_0 \cap \mathcal{A}_1 = \emptyset$

$$(\forall i \in \{0,1\})(] \bigcup \mathcal{A}_i[\mathbb{L} \setminus C_i \in \mathbb{L} \land C_i \subseteq] \bigcup \mathcal{A}_i[\mathbb{L})$$

Definition

 ${\mathcal A}$ is tiny family iff

$$(\forall B \in \mathbb{L}) \quad \bigcup \{A \in \mathcal{A} : B \cap A \neq \emptyset\} \in \mathbb{L}.$$

Definition

 ${\mathcal A}$ is regular family iff

$$(\forall C - \text{closed}) \bigcup \{A \in \mathcal{A} : A \cap C \neq \emptyset\}$$
 is Borel

Theorem

Let $\mathcal{A} \subseteq P(2^{\omega}) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

- 1. A is regular family,
- 2. A has closed splitting property,
- 3. A is tiny family.

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}' \notin \mathbb{L}$ and $] \bigcup \mathcal{A}'|_{\mathbb{L}} = \emptyset$.

Theorem

Let $\mathcal{A} \subseteq P(2^{\omega}) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

- 1. \mathcal{A} is regular family,
- 2. A has closed splitting property,
- 3. A is tiny family.

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}' \notin \mathbb{L}$ and $]\bigcup \mathcal{A}'|_{\mathbb{L}} = \emptyset$.

Theorem

Let $\mathcal{A} \subseteq P(2^{\omega}) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

- 1. \mathcal{A} is regular family,
- 2. A has closed splitting property,
- 3. A is tiny family.

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}' \notin \mathbb{L}$ and $] \bigcup \mathcal{A}'[_{\mathbb{L}} = \emptyset$.

Proof:

Let κ be smallest cardinality of A s.t. Theorem is false. $A = \{A_{\alpha} : \alpha < \kappa\}$ and define σ -ideal

$$(\forall X \in \mathcal{P}(\kappa))(X \in \mathscr{L} \leftrightarrow \bigcup_{\alpha \in X} \mathcal{A}_{\alpha} \in \mathbb{L}).$$

Observe that

- ▶ if $X \notin \mathscr{L}$ then] $\bigcup_{\alpha \in X} A_{\alpha}[\mathbb{L} \notin \mathbb{L}$ then \mathscr{L} is c.c.c.c
- $add(\mathscr{L}) = \kappa$

Let $P(\mathcal{A}) = P(\kappa)/\mathscr{L}$ and (\mathbb{P}_0, \leq) where

$$\mathbb{P}_0 = P(\kappa) \setminus \mathscr{L}$$

and

$$(orall p,q\in \mathbb{P}_0)$$
 $(p\leq q\leftrightarrow p\subseteq q)$

Define $[\cdot] : \omega^{<\omega} \to \mathbb{P}_0$ s.t.

- $[\emptyset] = \kappa$ and
- ► $(\forall t, s \in \omega^{<\omega})(t \subset s \rightarrow [s] \leq [t])$ and
- ► $(\forall t, s \in \omega^{<\omega})((t \neq s \land |t| = |s|) \rightarrow [s] \cap [t] = \emptyset)$ and
- $(\forall t \in T)(\{[t^n] : n \in \omega\})$ is maximal antichain in \mathbb{P}_0 and
- ► $(\forall t \in \omega^{<\omega})(\lambda(] \bigcup_{\alpha \in [t]} A_{\alpha}[_{\mathbb{L}}) < 2^{-|t|})$ and

• $(\forall t \in \omega^{<\omega})(\exists C \notin \mathbb{L}) \ C \text{ is closed and }]\bigcup_{\alpha \in [t]} A_{\alpha}[\mathbb{L} \setminus C \in \mathbb{L}.$

Because **closed splitting** and \mathscr{L} is c.c.c. σ - ideal on the κ . Now let \mathbb{P} be a suborder of \mathbb{P}_0 countably generated (as a σ -field) by the family $\{[t] : t \in \omega^{<\omega}\}$.

Let $\dot{r} \in V^{\mathbb{P}}$ be the name for the generic real with

$$[t] \Vdash t \subset \dot{r}$$
 for any $t \in \omega^{<\omega}$

Let $\dot{R} \in V^{\mathbb{P}}$ - name for set of generic reals

$$\Vdash \dot{R} = \bigcap \{] \bigcup_{\alpha \in [t]} A_{\alpha}[_{\mathbb{L}}: t \subseteq \dot{r} \}.$$

By the last condition for $[\cdot]$ we have $\Vdash \dot{R} \neq \emptyset$.

Claim $(\forall X \in \mathbb{P}) X \Vdash "\dot{R} \subseteq] \bigcup_{\alpha \in X} A_{\alpha}[\mathbb{L}".$ **Proof.** By induction over Borel complexity in σ -field \mathbb{P} .

 (P, \leq) which is equivalent in the forcing sense (\mathbb{P}, \subseteq) : $B \in P \leftrightarrow \exists X \in \mathbb{P}B = \bigcup_{\alpha \in X} A_{\alpha}$

Let M be countable elementary submodel of large enough structure H_{λ} ($|\mathscr{P}(P)|^+ \leq \lambda$) containing forcing notion $P \in M$ defined above. Then $x \in 2^{\omega}$ is M - genereic real iff

 $\{B \in P \cap M : x \in B\}$ generate the $P \cap M$ generic ultrafilter.

Claim

Let *M* be countable elementary submodel of large enough structure H_{λ} containing forcing notion $P \in M$ defined above. Then for every $B \in P \cap M$ there exists nonnull Borel subset of the following set:

 $\{x \in B : X \text{ is } M \text{ - generic real }\}.$

Proof

Let $B \in P \cap M$, P is c.c.c. then is proper. Find $Q \leq B$ which is $P \cap M$ - generic one. If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$. Now consider the following set

$C = B \cap \bigcap \{ \bigcup \{ p : p \in D \cap M \} : D \in M \text{ is open dense set } \},\$

then one can see that there exists $X_0 \in \mathbb{P}$ such that $C = \bigcup_{\alpha \in X_0} A_\alpha$ (because P is an σ -algebra as \mathbb{P} is and M is countable). Let observe that $C = \{x \in B : x \text{ is } M\text{-generic real.}\}$ Now we show that $C \notin \mathbb{L}$, if not then the set $\{q : q \Vdash \dot{R} \subseteq B \setminus C\}$ is dense under B and then $B \Vdash \dot{R} \subseteq B \setminus C$.

Let $B \in P \cap M$, P is c.c.c. then is proper. Find $Q \leq B$ which is $P \cap M$ - generic one. If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$. Now consider the following set

$$\mathcal{C} = \mathcal{B} \cap igcap \{igcup \{ p: p \in D \cap M \}: \ D \in M ext{ is open dense set } \},$$

then one can see that there exists $X_0 \in \mathbb{P}$ such that $C = \bigcup_{\alpha \in X_0} A_{\alpha}$ (because P is an σ -algebra as \mathbb{P} is and M is countable). Let observe that $C = \{x \in B : x \text{ is } M\text{-generic real.}\}$ Now we show that $C \notin \mathbb{L}$, if not then the set $\{q : q \Vdash \dot{R} \subseteq B \setminus C\}$ is dense under B and then $B \Vdash \dot{R} \subseteq B \setminus C$.

Let $B \in P \cap M$, P is c.c.c. then is proper. Find $Q \leq B$ which is $P \cap M$ - generic one. If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$. Now consider the following set

$$\mathcal{C} = \mathcal{B} \cap igcap \{igcup \{ p: p \in D \cap M \}: \ D \in M ext{ is open dense set } \},$$

then one can see that there exists $X_0 \in \mathbb{P}$ such that $C = \bigcup_{\alpha \in X_0} A_{\alpha}$ (because P is an σ -algebra as \mathbb{P} is and M is countable). Let observe that $C = \{x \in B : x \text{ is } M\text{-generic real.}\}$ Now we show that $C \notin \mathbb{L}$, if not then the set $\{q : q \Vdash \dot{R} \subseteq B \setminus C\}$ is dense under B and then $B \Vdash \dot{R} \subseteq B \setminus C$.

Let $B \in P \cap M$, P is c.c.c. then is proper. Find $Q \leq B$ which is $P \cap M$ - generic one. If $D \in M$ is any dense then $Q \Vdash \dot{G} \cap D \cap M \neq \emptyset$. Now consider the following set

$$\mathcal{C} = \mathcal{B} \cap igcap \{igcup \{ p: p \in D \cap M \} : \ D \in M ext{ is open dense set } \},$$

then one can see that there exists $X_0 \in \mathbb{P}$ such that $C = \bigcup_{\alpha \in X_0} A_\alpha$ (because P is an σ -algebra as \mathbb{P} is and M is countable). Let observe that $C = \{x \in B : x \text{ is } M\text{-generic real.}\}$ Now we show that $C \notin \mathbb{L}$, if not then the set $\{q : q \Vdash \dot{R} \subseteq B \setminus C\}$ is dense under B and then $B \Vdash \dot{R} \subseteq B \setminus C$.

From the other side take any $G \ni Q - P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $q \Vdash R \subseteq q \subseteq p$.

Then $V[G] \models (\forall p \in G \cap M) \hat{R}_G \subseteq p$.

But $q \Vdash G \cap M \cap D \neq \emptyset$ for every dense open set $D \in M$.

Then $\{p \in P \cap M : \hat{R}_G \subseteq p\}$ forms the $P \cap M$ generic filter over M and we have $V[G] \models \hat{R}_G \subseteq C$.

But $G \ni Q$ was choosen arbitrary and then $Q \Vdash \dot{R} \subseteq C$ but $Q \leq B$ then we have $Q \Vdash \dot{R} \subseteq B \setminus C$ also, contradiction. We have proved that $C \notin \mathbb{L}$ then $]C[_{\mathbb{L}} \in Borel \setminus \mathbb{L}$ what finishes t

proof.

From the other side take any $G \ni Q - P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that q < p, Q. Then $q \Vdash R \subset q \subset p$. Then $V[G] \models (\forall p \in G \cap M)R_G \subseteq p$.

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

From the other side take any $G \ni Q - P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that q < p, Q. Then $q \Vdash R \subset q \subset p$. Then $V[G] \models (\forall p \in G \cap M)R_G \subseteq p$. But $q \Vdash G \cap M \cap D \neq \emptyset$ for every dense open set $D \in M$. Then $\{p \in P \cap M : R_G \subseteq p\}$ forms the $P \cap M$ generic filter over *M* and we have $V[G] \models R_G \subseteq C$.

proot.

From the other side take any $G \ni Q - P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $q \Vdash R \subset q \subset p$. Then $V[G] \models (\forall p \in G \cap M)R_G \subseteq p$. But $q \Vdash G \cap M \cap D \neq \emptyset$ for every dense open set $D \in M$. Then $\{p \in P \cap M : R_G \subseteq p\}$ forms the $P \cap M$ generic filter over *M* and we have $V[G] \models R_G \subseteq C$. But $G \ni Q$ was choosen arbitrary and then $Q \Vdash R \subseteq C$ but $Q \leq B$ then we have $Q \Vdash R \subseteq B \setminus C$ also, contradiction.

From the other side take any $G \ni Q - P$ generic over V. Take any $p \in G \cap M$, find any $q \in G$ such that $q \leq p, Q$. Then $a \Vdash R \subseteq a \subseteq p$. Then $V[G] \models (\forall p \in G \cap M)R_G \subseteq p$. But $q \Vdash G \cap M \cap D \neq \emptyset$ for every dense open set $D \in M$. Then $\{p \in P \cap M : R_G \subseteq p\}$ forms the $P \cap M$ generic filter over *M* and we have $V[G] \models R_G \subseteq C$. But $G \ni Q$ was choosen arbitrary and then $Q \Vdash R \subseteq C$ but $Q \leq B$ then we have $Q \Vdash R \subseteq B \setminus C$ also, contradiction. We have proved that $C \notin \mathbb{L}$ then $]C[_{\mathbb{L}} \in Borel \setminus \mathbb{L}$ what finishes the proof.

Claim (Borel reading names)

Let \dot{x} be any \mathbb{P} - name s.t. $\Vdash \dot{x} \in 2^{\omega}$. Let us choose any condition $B \in \mathbb{P}$ and let \dot{s} be any \mathbb{P} -name s.t. $\Vdash \dot{s} \in \dot{R}$. Then there exists a stronger condition $C \in \mathbb{P}$, Borel nonnull set $D \subseteq] \bigcup_{\alpha \in C} A_{\alpha}[_{\mathbb{L}}$ and Borel function $f : D \to 2^{\omega}$ coded in the ground model V such that $f(\dot{s}_G) = \dot{x}_G$ in any generic extension V[G].

Proof. Let $B \in P$, $M \prec H_{\lambda}$ for large λ s.t. $(2^{|P|})^+ < \lambda$ with $P, B \in M$.

Find $C \leq B$ (master condition) by previous Claim. Consider an open base \mathcal{O} . Let

$$f_O^+ = \bigcup \{]p[\mathbb{L} \times O : p \in P \cap M \land p \Vdash \dot{x} \in \check{O} \}$$

$$f_{O}^{-} = \bigcup \{]p[_{\mathbb{L}} \times 2^{\omega} \setminus O : p \in P \cap M \land p \Vdash \dot{x} \notin \check{O} \}$$

for any $O \in \mathcal{O}$. *M* is countable then $f = \bigcap_{O \in \mathcal{O}} (f_O^+ \cup f_O^-)$ is Borel function and $C \subseteq dom(f)$ and $f(r) = x_G$ where *G* is as in the definition for *M* generic real.

Remark

For fixed large enough $M\prec H_\lambda$ and any G -P generic $/V,\,f$ is a constant on \dot{R}_G

 $\dot{R}_G \subset \bigcap (G \cap M)$ and $\dot{R}_G \subset \{x : x \text{ is } M \text{ generic real}\}$

Claim $P(\mathcal{A}) \Vdash 2^{\omega} \cap V$ is nonnull.

If not then $]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V \in \mathbb{L}$ in V[G] but $(\bigcup \mathcal{A} \notin \mathbb{L})^V$. Take a Borel set $B \in \mathbb{L}(2^{\omega} \times 2^{\omega})$ coded in V s.t. $]\bigcup \mathcal{A} \cap V[_{\mathbb{L}} = B_s$ where $s = \dot{s}_G$ with $\Vdash \dot{s} \in \dot{R}$. Take $x \in]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V$. Then we have

 $x \in B_s \leftrightarrow (s, x) \in B \leftrightarrow s \in B^x$

and we have $R \subseteq B^{\times}$ (*f* is constant on \dot{R}_G *f*-Borel reading names). $B^{\times} \notin \mathbb{L}$.

If not then there exists $p \in G$ such that $p \Vdash \hat{R} \subseteq B^{\times}$ and $p \Vdash \hat{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\mathbb{L}]$.

By find $G \ni q \leq p$ such that $q \Vdash \bigcup_{\alpha \in q} A_{\alpha} [\cap B^{\times} = \emptyset$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha} [\mathbb{L}$ but $q \Vdash \dot{R} \subseteq B^{\times}$ what is impossible.

 $]\bigcup \mathcal{A}[\mathbb{L}\cap V\subseteq \{x\in 2^{\omega}: B^{\times}\notin \mathbb{L}\}\$

If not then $]\bigcup \mathcal{A}[_{\mathbb{L}}\cap V \in \mathbb{L}$ in V[G] but $(\bigcup \mathcal{A} \notin \mathbb{L})^V$. Take a Borel set $B \in \mathbb{L}(2^{\omega} \times 2^{\omega})$ coded in V s.t. $]\bigcup \mathcal{A} \cap V[_{\mathbb{L}} = B_s$ where $s = \dot{s}_G$ with $\Vdash \dot{s} \in \dot{R}$.

Take $x \in \bigcup \mathcal{A}[\mathbb{L} \cap V]$. Then we have

 $x \in B_s \leftrightarrow (s, x) \in B \leftrightarrow s \in B^x$

and we have $R \subseteq B^{\times}$ (*f* is constant on \dot{R}_G *f*-Borel reading names). $B^{\times} \notin \mathbb{L}$.

If not then there exists $p \in G$ such that $p \Vdash \dot{R} \subseteq B^{\times}$ and $p \Vdash \dot{R} \subseteq \bigcup_{\alpha \in P} A_{\alpha}[\mathbb{L}]$.

By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}[\cap B^{\times} = \emptyset$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}[_{\mathbb{L}} \text{ but } q \Vdash \dot{R} \subseteq B^{\times} \text{ what is impossible.}$

 $]\bigcup \mathcal{A}[\mathbb{L}\cap V\subseteq \{x\in 2^{\omega}: B^{\times}\notin \mathbb{L}\}\$

If not then $]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V \in \mathbb{L}$ in V[G] but $(\bigcup \mathcal{A} \notin \mathbb{L})^V$. Take a Borel set $B \in \mathbb{L}(2^{\omega} \times 2^{\omega})$ coded in V s.t. $]\bigcup \mathcal{A} \cap V[_{\mathbb{L}} = B_s$ where $s = \dot{s}_G$ with $\Vdash \dot{s} \in \dot{R}$. Take $x \in]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V$. Then we have

$$x \in B_s \leftrightarrow (s, x) \in B \leftrightarrow s \in B^x$$

and we have $R \subseteq B^{\times}$ (*f* is constant on \dot{R}_{G} *f*-Borel reading names). $B^{\times} \notin \mathbb{L}$.

If not then there exists $p \in G$ such that $p \Vdash R \subseteq B^{\times}$ and $p \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[_{\mathbb{L}}.$

By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}[\cap B^{\times} = \emptyset$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}[_{\mathbb{L}}$ but $q \Vdash \dot{R} \subseteq B^{\times}$ what is impossible.

 $]\bigcup \mathcal{A}[\mathbb{L}\cap V\subseteq \{x\in 2^{\omega}: B^{x}\notin \mathbb{L}\}\$

If not then $]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V \in \mathbb{L}$ in V[G] but $(\bigcup \mathcal{A} \notin \mathbb{L})^V$. Take a Borel set $B \in \mathbb{L}(2^{\omega} \times 2^{\omega})$ coded in V s.t. $]\bigcup \mathcal{A} \cap V[_{\mathbb{L}} = B_s$ where $s = \dot{s}_G$ with $\Vdash \dot{s} \in \dot{R}$. Take $x \in]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V$. Then we have

$$x \in B_s \leftrightarrow (s, x) \in B \leftrightarrow s \in B^x$$

and we have $R \subseteq B^{\times}$ (*f* is constant on \dot{R}_{G} *f*-Borel reading names). $B^{\times} \notin \mathbb{L}$.

If not then there exists $p \in G$ such that $p \Vdash \hat{R} \subseteq B^x$ and $p \Vdash \hat{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\mathbb{L}]$.

By find $G \ni q \le p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha} [\cap B^{\times} = \emptyset$ and also $a \Vdash \dot{R} \subseteq \mathbb{N}$ what is impossible

 $]\bigcup \mathcal{A}[\mathbb{L}\cap V\subseteq \{x\in 2^{\omega}: B^{x}\notin \mathbb{L}\}\$

If not then $]\bigcup \mathcal{A}[_{\mathbb{L}}\cap V \in \mathbb{L}$ in V[G] but $(\bigcup \mathcal{A} \notin \mathbb{L})^V$. Take a Borel set $B \in \mathbb{L}(2^{\omega} \times 2^{\omega})$ coded in V s.t. $]\bigcup \mathcal{A} \cap V[_{\mathbb{L}} = B_s$ where $s = \dot{s}_G$ with $\Vdash \dot{s} \in \dot{R}$. Take $x \in]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V$. Then we have

$$x \in B_s \leftrightarrow (s, x) \in B \leftrightarrow s \in B^x$$

and we have $R \subseteq B^{\times}$ (*f* is constant on \dot{R}_{G} *f*-Borel reading names). $B^{\times} \notin \mathbb{L}$.

If not then there exists $p \in G$ such that $p \Vdash \dot{R} \subseteq B^{\times}$ and $p \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[\mathbb{L}]$. By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}[\cap B^{\times} = \emptyset$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}[\mathbb{L}]$ but $q \Vdash \dot{R} \subseteq B^{\times}$ what is impossible.

$]\bigcup \mathcal{A}[\mathbb{L}\cap V\subseteq \{x\in 2^{\omega}: B^{\times}\notin \mathbb{L}\}\$

If not then $]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V \in \mathbb{L}$ in V[G] but $(\bigcup \mathcal{A} \notin \mathbb{L})^V$. Take a Borel set $B \in \mathbb{L}(2^{\omega} \times 2^{\omega})$ coded in V s.t. $]\bigcup \mathcal{A} \cap V[_{\mathbb{L}} = B_s$ where $s = \dot{s}_G$ with $\Vdash \dot{s} \in \dot{R}$. Take $x \in]\bigcup \mathcal{A}[_{\mathbb{L}} \cap V$. Then we have

$$x \in B_s \leftrightarrow (s, x) \in B \leftrightarrow s \in B^x$$

and we have $R \subseteq B^{\times}$ (*f* is constant on \dot{R}_{G} *f*-Borel reading names). $B^{\times} \notin \mathbb{L}$.

If not then there exists $p \in G$ such that $p \Vdash \dot{R} \subseteq B^{\times}$ and $p \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in P} A_{\alpha}[_{\mathbb{L}}.$ By find $G \ni q \leq p$ such that $q \Vdash] \bigcup_{\alpha \in q} A_{\alpha}[\cap B^{\times} = \emptyset$ and also $q \Vdash \dot{R} \subseteq] \bigcup_{\alpha \in q} A_{\alpha}[_{\mathbb{L}}$ but $q \Vdash \dot{R} \subseteq B^{\times}$ what is impossible.

$$]\bigcup \mathcal{A}[_{\mathbb{L}}\cap V\subseteq \{x\in 2^{\omega}:B^{x}\notin \mathbb{L}\}$$

Now let us consider any $G - \mathbb{P}$ generic ultrafilter over V.

 \mathscr{L} is κ - complete ideal on κ .

Our forcing is *c.c.c.* then is κ^+ - saturated one then the ultrapower Ult(V, G) is wellfounded.

Consider $j: V \to Ult(V, G)$ elementary embedding, $cp(j) = \kappa$. We have that $x = j(x) \in j(A_{\alpha})$ by elementarity of J.

In $Ult(V, G) \bigcup \mathcal{A} \subseteq \bigcup_{\alpha < \kappa} j(\mathcal{A}_{\alpha}) \in \mathbb{L}$ by $\kappa < j(\kappa)$

Then by absolutnes of Borel codes of null sets between transitive ZFC models we have $\bigcup_{\alpha < \kappa} A_{\alpha} \in \mathbb{L}$ in V[G] what is impossible by the last Claim.

Now let us consider any $G - \mathbb{P}$ generic ultrafilter over V. \mathscr{L} is κ - complete ideal on κ .

Our forcing is *c.c.c.* then is κ^+ - saturated one then the ultrapower Ult(V, G) is wellfounded.

Consider $j: V \to Ult(V, G)$ elementary embedding, $cp(j) = \kappa$. We have that $x = j(x) \in j(A_{\alpha})$ by elementarity of J.

In $Ult(V, G) \bigcup A \subseteq \bigcup_{\alpha < \kappa} j(A_{\alpha}) \in \mathbb{L}$ by $\kappa < j(\kappa)$

Then by absolutnes of Borel codes of null sets between transitive ZFC models we have $\bigcup_{\alpha < \kappa} A_{\alpha} \in \mathbb{L}$ in V[G] what is impossible by the last Claim.

Now let us consider any G - \mathbb{P} generic ultrafilter over V. \mathscr{L} is κ - complete ideal on κ .

Our forcing is *c.c.c.* then is κ^+ - saturated one then the ultrapower Ult(V, G) is wellfounded.

Consider $j: V \to Ult(V, G)$ elementary embedding, $cp(j) = \kappa$. We have that $x = j(x) \in j(A_{\alpha})$ by elementarity of J. In $Ult(V, G) \bigcup A \subseteq \bigcup_{\alpha < \kappa} j(A_{\alpha}) \in \mathbb{L}$ by $\kappa < j(\kappa)$ and $\bigcup_{\alpha < \kappa} A_{\alpha} \in \mathbb{L}$ is a null set. Then by absolutnes of Borel codes of null sets between transitive ZFC models we have $\bigcup_{\alpha < \kappa} A_{\alpha} \in \mathbb{L}$ in V[G] what is impossible by the last Claim.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Now let us consider any G - \mathbb{P} generic ultrafilter over V. \mathscr{L} is κ - complete ideal on κ . Our forcing is *c.c.c.* then is κ^+ - saturated one then the ultrapower Ult(V, G) is wellfounded. Consider $j: V \to Ult(V, G)$ elementary embedding, $cp(j) = \kappa$.

・ロト・(中下・(中下・(中下・))

Now let us consider any G - \mathbb{P} generic ultrafilter over V. \mathscr{L} is κ - complete ideal on κ . Our forcing is *c.c.c.* then is κ^+ - saturated one then the ultrapower Ult(V, G) is wellfounded. Consider $j: V \to Ult(V, G)$ elementary embedding, $cp(j) = \kappa$. We have that $x = j(x) \in j(A_{\alpha})$ by elementarity of J. In $Ult(V, G) \cup \mathcal{A} \subseteq \bigcup_{\alpha < \kappa} j(\mathcal{A}_{\alpha}) \in \mathbb{L}$ by $\kappa < j(\kappa)$

Now let us consider any G - \mathbb{P} generic ultrafilter over V. \mathscr{L} is κ - complete ideal on κ . Our forcing is *c.c.c.* then is κ^+ - saturated one then the ultrapower Ult(V, G) is wellfounded. Consider $j: V \to Ult(V, G)$ elementary embedding, $cp(j) = \kappa$. We have that $x = j(x) \in j(A_{\alpha})$ by elementarity of J. In $Ult(V, G) \bigcup \mathcal{A} \subseteq \bigcup_{\alpha < \kappa} j(\mathcal{A}_{\alpha}) \in \mathbb{L}$ by $\kappa < j(\kappa)$ and $\bigcup_{\alpha < \kappa} A_{\alpha} \in \mathbb{L}$ is a null set.

Now let us consider any G - \mathbb{P} generic ultrafilter over V. \mathscr{L} is κ - complete ideal on κ . Our forcing is *c.c.c.* then is κ^+ - saturated one then the ultrapower Ult(V, G) is wellfounded. Consider $j: V \to Ult(V, G)$ elementary embedding, $cp(j) = \kappa$. We have that $x = j(x) \in j(A_{\alpha})$ by elementarity of J. In $Ult(V, G) \cup \mathcal{A} \subseteq \bigcup_{\alpha < \kappa} j(\mathcal{A}_{\alpha}) \in \mathbb{L}$ by $\kappa < j(\kappa)$ and $\bigcup_{\alpha < \kappa} A_{\alpha} \in \mathbb{L}$ is a null set. Then by absolutnes of Borel codes of null sets between transitive ZFC models we have $\bigcup_{\alpha < \kappa} A_{\alpha} \in \mathbb{L}$ in V[G] what is impossible by the last Claim.

Theorem

Let $\mathcal{A} \subseteq P(2^{\omega}) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

- 1. \mathcal{A} is regular family,
- 2. A has closed splitting property,
- 3. A is tiny family.

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is completely nonmeasurable.

Theorem

Let $\mathcal{A} \subseteq P(2^{\omega}) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

- 1. \mathcal{A} is regular family,
- 2. A has closed splitting property,
- 3. \mathcal{A} is tiny family.

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is completely nonmeasurable.

Theorem

Let $\mathcal{A} \subseteq P(2^{\omega}) \cap \mathbb{L}$ be any family of pairwise disjoint null subsets of the Cantor space such that $\bigcup \mathcal{A} \notin \mathbb{L}$. Asume that:

- 1. \mathcal{A} is regular family,
- 2. A has closed splitting property,
- 3. A is tiny family.

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is completely nonmeasurable.

$\begin{array}{l} \text{Claim} \\ \text{Assume that } \mathcal{A}' \subseteq \mathcal{A} \text{ s.t. } [\bigcup \mathcal{A}']_{\mathbb{L}} \neq \mathbb{R}. \text{ Then} \\ \\ (\exists \mathscr{B} \subseteq \mathcal{A} \setminus \mathcal{A}') \quad \bigcup \mathscr{B} \setminus [\bigcup \mathcal{A}']_{\mathbb{L}} \notin \mathbb{L} \ \land \] \bigcup \mathscr{B}[_{\mathbb{L}}^{\bigcup (\mathcal{A} \setminus \mathcal{A}')} = \emptyset. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Thank You

- Brzuchowski J., Cichoń J., Grzegorek E., Ryll-Nardzewski C., On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448
- 🔋 Bukovsky L., , Bull. Polish Acad. Sci. Math. 1979, 27,
- Cichoń J., Morayne M., Rałowski R., Ryll-Nardzewski C., Żeberski S., On nonmeasurable unions, Topol. and Its Appl., 2007, 154, 884-893
- Fremlin D., Todorcevic S., Partition of [0, 1] into negligible sets, 2004, preprint is avaible on the web page http://www.essex.ac.uk/maths/staff/fremlin/preprints.ht
- T. Bartoszynski, H. Judah, S. Shelah, The Cichon Diagram, J. Symbolic Logic vol. 58 (2) (1993), pp.401-423,
- J. Cichoń, *On two-cardinal properties of ideals*, Trans. Am. Math. Soc. **vol 314**, no. 2 (1989), pp 693-708,
- R.Rałowski, Sz. Żeberski, Completely nonmeasurable unions, Central European Journal of Mathematics, 8(4) (2010), pp.683-687.